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Polarization factors derived in a previous paper [1] are presented for ls, 2s, 2pa and 2pn orbitals 
on two centers. The formulas for gross atomic populations and integral approximations are tested 
in diatomics. It is found that our definition of atomic charges proposed earlier is far superior to the 
Mulliken approximation. With proper partitioning into charge and hybrid parts the total dipole 
moment of the wavefunction can be obtained with great accuracy. The application of the formulas 
to two-center hybrid repulsion integrals is less satisfactory in the lowest-order approximation. 

Die Polarisationsfaktoren einer frtiheren Arbeit [1] werden fiir ls-, 2s-, 2pa- und 2pn-Orbitale 
an zwei Zentren angegeben. Die Formeln for Atomladungsverteilungen und Integralapproximationen 
werden in zweiatomigen Molekiilen gepriift. Man findet, dab unsere vorgeschlagene Definition yon 
Atomladungen der Mulliken-N~iherung welt iiberlegen ist. Bei geeigneter Aufteilung in Ladungs- und 
Hybridanteil kann das Dipolmoment der Wellenfunktion mit groBer Genauigkeit erhalten werden. 
Die Anwendung der Formeln auf Zwei-Zentren-Hybridintegrale der Elektronenwechselwirkung ist 
weniger zufriedenstellend in der niedrigsten Approximationsstufe. 

I. Introduction 

Recently, we developed the basis for an approximate  molecular  orbital 
me thod  whose chief characteristic is the lack of empirical adjustment [1, 2]. 
The basic idea was to use c o m m u t a t o r  equat ions u = It, x] between hermitian 
and ant ihermit ian operators  to establish approximate  integral relations on the 
basis of  t runcated expansions for integrals over a tomic  orbitals #, v on different 
centers. We have tested the accuracy of approximat ions  for fl integrals over a 
core Hami l ton ian  in the case of  two equal 2s, 2po- and 2pro orbitals on different 
centers [2]. In this paper,  we test the accuracy of charge distributions and cer- 
tain selected repulsion integrals in heteropolar  diatomics. After a brief formula- 
t ion of  the method,  we present the polar izat ion factors for l s, 2s, 2p orbitals. 
We then discuss the dipole moments  of various diatomics and show that a 
satisfactory definition of a tomic  charge distributions in molecules can be gained 
on the basis of our  considerations.  The use of this definition of a tomic charge 
distributions in polyatomics  is straightforward.  Our  results for repulsion integrals 
show that the lowest order  expansions are sometimes insufficient to guarantee 
the same accuracy as in one-electron integrals. 

* Permanent address: Department of Chemistry, Saint Louis University, Saint Louis, 
Missouri 63156, USA. 
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2. The General Method 

A commutator equation 

u = [t, x] (2.1) 

with hermitian and antihermitian operators u, t, x is equivalent to a matrix 
representation in a complete orthogonal or non-orthogonal basis set. For  the 
case of one-electron operators the following expansion over non-orthogonal 
orbitals )~, )( seems to be most convenient 

U#v 2 - 1 - 1 = xux(S )xx'tx', tux(S )zx,x~,,- 
with x,x' (2.2) 

u~ ,=<#[u lv>  etc. 

if # and v are atomic orbitals on different centers. S - i  is the inverse of the 
overlap matrix. We denote the adjugate matrix by S. By definition of S-  1 

= S-  1 det S (2.3) 

holds. With (2.2) and 
following way 

Xll v 

(2.3) an element x,~ can be expressed exactly in the 

( ~  t#xSx#- txvSxv) -1 

• I�89 ~ (tzvSxu- tuxSxv) (xuu + xvv) 

+ �89 ~ (t~g~, + t ,zg~ ) (X,, -- Xvj 
Z 

+ 2 1�89 ' - tuxSxr + x~,v) 
#' g:l*( Z 
V' ~V 

Z 
+�89 

X 
+�89 

X 

q- Uuv detS]. 

(2.4) 

The right side of (2.4) consists of seven terms: the Mulliken approximation for x 
and its polarization, the other single-center contributions and their polarization, 
the rest of the two-center contributions and their polarization and the 
contribution of u. Our previous work [1, 2-1 was concerned with the first two 
terms and the dominant contribution of the third and fourth term in cases where 
# and v are not equivalent orbitals on different centers. We have neglected 
contributions from terms five and six and kept seven where it was different from 
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zero. The following 
property listed on the right 

[~, 1] = o 

[r ,  r]  = 0 

It ,  v ]  = o 

I t ,  T ]  = e 

Jr, hi = p 

It ,  p ]  : - 1 

r12 J 

commutator  equations seem to be of interest for the 

overlap (2.5a) 

dipole moment (2.5b) 

potential energy (2.5c) 

kinetic energy (2.5d) 

core energy (2.5e) 

slope of overlap (2.5 0 

= 0 electronic interaction energy. (2.5g) 

The last equation fits into a two-electron form of (2.4). In all relations t = r. For  
this particular case, the formalism conserves the dipole moment on any level of 
truncation of (2.4). This is due to the symmetry x = t of (2.5b) as an inspection 
of (2.2) shows. We derive now an approximate formula for x,~ with four 
expansion functions, #, #' on atom A and v, v' on atom B, in the case t = r. For  
the sake of simplicity and practicability we drop all terms containing products 
of two or more overlap integrals in the polarization factors x. Applications in 
Section 4 show that this means an insignificant loss of accuracy in the dipole 
moment. 

xu~ = �89 + z,v) xu, + �89 - zuv) x~v 

+�89 + z~,v) xuu, + �89162 - z,,,) x~,~ 

+ u,~ detS 

with (2.6) 
2 z . v  - Suv(z~, u + z~v ) - S u , v z u . , -  S .~ , z~ .  

z~,~ = S , ~ ( z . ~ ,  - z ~ )  

2 2 {~;;,} 
d e t S =  ((1 - Su~ ) (1 - S~,r for of same type 2 2 [ (1  - s . ,  ~) (1 - s ~ , )  {.,~.}.',~ 

z is a component of r in a local coordinate system, in particular along the 
internuclear axis. ~,,~ and ~,r are defined similarly to z,~. Inspection of zu~ 
shows that hybrid parts are eliminated from the two-center dipole moment. 
The rest contributes to the charge redistribution. The corresponding hybrid 
parts to those of zu~ are explicitly presented in terms three and four of (2.6). In 
the following, we calculate polarization factors x for various ratios of exponents 
of ls, 2s, 2/) orbitals on two centers. 

Then we apply formula (2.6) to overlap, dipole moment and electronic 
repulsion energy. 

3. Polarization Factors 

If #v approaches formally an average of ## and vv in the united atom limit, 
then #' and v' are not essential. Otherwise the type of #' and v' is fixed by the 
condition that the united atom limit of #v is represented by an average of ##' 
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Table  1. Polar iza t ion  factors x for ls,  2s, 2p orbi tals  on two centers  ~ 

x l t  = 1 - 2<2p~"(~")1 lsb(~b)) 

0 .( ls . (~.)I  lS~(~)) 

x~ = 1 -- ] , /~(3pa.(~.)12Sb(~b)) 

0. (2S.((.)  12Sb(~b)) 

• = 1 -V8(3d~"(~")12pab(~b)) + 

0~ (2p~r.(ff.) 12P+r~(~b)) 

0. (2P~.(~.)I 2P~n(~b)> 

2 <2p<r.(~.) 12sb(~) ~ 
~41s = 1 - -  

o.( lsa(C.)12s~(C~) ) 

- - -  ( l s . (~ . )  [ ls~(~,)) (2p  a~((~,) 12Pa~((~)))/(O. (ls.(~.) 12pa~(~))) 

+/3- 5 

_ _ _  (2s.(~.)12s~(ff~,) > <3Pa~(~'~)12p~r~(s 

" Abbrevia t ions :  11 = l s .  lsb, ss = 2s .2s  b etc. 

and vv' in a natural way. This suffices to guarantee a proper behaviour of the 
approximation (2.6) for small and large internuclear distances. 

For  practical purposes we have listed the polarization factors x of Eq. (2.6) 
used for ls, 2s, 2pa and 2pr~ orbitals in Table 1. These are simple combinations 
of overlap integrals over Slater orbitals. Exponents ~a and ~b refer to the two 
orbitals on atom A and B for which the polarization factors are calculated; 
~', and (~, refer to the complementary orbitals used in the expansion, e.g. 2pa, and 
lsb for xls~ We have calculated these seven polarization factors for various 
ratios ( = ( , / ( b  and internuclear distances Oa=(,R. ~' ,=(J3.5 and ( ;=3 .5(b  
was assumed for • and ( 'a=( , ,  (~,=(b for ns,. This represents the Slater 
orbitals for first-row atoms fairly well. In Section 4, we use the actual basis set 
orbitals for expansion. 

The results are in Figs. 1-4. x = 0  means equal weighting factors for 
contributions to atoms A and B. x = 1 means the whole contribution goes to A, 
• = - 1 the whole contribution goes to B. x > 1 and x < - 1 characterizes cases 
with "overpolarization' ,  i.e. where a simple partitioning in two positive parts 
cannot adequately describe the situation. In Fig. 1 the behaviour of x for ls 
and 2s orbitals can be simply characterized as follows: If the orbital on atom A 
is more contracted than the orbital on atom B (( < 1) the contribution to 
atom A is increased. For  a more diffuse orbital on A (~ > 1), it is decreased. With 
increasing internuclear distance the contribution to the atom with the more 
contracted orbital increases. The polarization factor approaches + 1 or - 1 .  
A similar behaviour is shown in Fig. 2 for 2pn orbitals. The complicated 



Polarization and Charge Distributions 13 

1.0 

0.5 

0 
"1,1.11 

l -0.5 

-1.0 

1.0 

0.5 

~-ss 0 

-0.5 

-1.0 

[ =0.2 
=0.5 

I I 

~=2 

~=5 

I I I I I I 

:0.2 

~=0.5 

{;=1 

~=2 
- -  m 

I I I I I I I I 

1 2 3 /. 5 6 7 8 9 

~-- Pa 

Fig. 1. Polarization factors x for l sa l s  b and 2sa2s ~ charge distributions in dependence of 0a= ~aR; 
~, orbital exponent of atom A, R internuclear distance (in atomic units), ~ = (v/~ 

dependence of z for 2pa orbitals can be explained in terms of the nodal property 
of the overlap integral. Here x~oS~, is the relevant quantity which does not 
vanish when S~ does. The singularity of x here means a shift of node of x,b as 
compared to the Mulliken approximation. Fig. 3 shows the polarization of a 
lsa 2sb distribution. Here ~ is different from zero for ( = 1. This means in this case 
that for equal exponents more charge goes to the atom with the ls orbital than 
to the atom with the 2s orbital. This is not surprising, since the center of charge 
is not in the middle between atoms A and B, but closer to A. 

The curves for zl~ and Xso show a different asymptotic behaviour for large 
internuclear distances from the previous ones. However for intermediate 
distances the interpretation is simpler. For  orbitals of equal type more 
contribution goes to the center with the more contracted orbital, whereas here 
is an overall shift of weight to atom A similar to xls. The weights are not equal 
for ~ = 1. There is a singularity for R = 0 in these two cases. This is due to the 
fact that we are dealing with the first two members of two different complete 
sets which are overcomplete in this limit. This problem could be avoided by 
using sets with flexible exponents which approach each other pairwise for R = 0. 
There is, however, no practical importance in the above failure. 
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Fig. 2. Polarization factors x for 2p%2p% and 2plra2pzc b charge distributions in dependence of 
Qa = ~=R; ~= orbital exponent of a tom A, R internuclear distance (in atomic units), ~ = ~b/~a 
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Fig. 3. Polarization factors z for ls=2s b charge distributions in dependence of 0= = (~R; ~a orbital 
exponent of a tom A, R internuclear distance (in atomic units), ~ = ~b/~a 
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Fig. 4. Polarization factors x for ls a 2pa b and 2s. 2pa b charge distributions in dependence of ~. = ~.R; 
~ orbital exponent of atom A, R internuclear distance (in atomic units), ~ = ~'b/(. 

4. Charge Distributions and Dipole Moments 

Among the concepts of molecular orbital theory, which are most popular 
among chemists is the assignment of a formal charge to an atom in a molecule. 
Such a definition avoids the complicated analysis of density contour maps and 
would offer us a simple tool in reactivity considerations. Unfortunately, the 
assignment of charge contributions to atoms in molecules is not unique, even 
if we use atomic basis sets centered at the different atoms. There exist overlap 
contributions CacbSab between two orbitals a, b on different centers A and B. 
Most popular is a procedure attributed to Mulliken [3], but also suggested by 
Daudel [4], to partition this contribution equally among the two atoms. 
Recently it became apparent, that the Mulliken analysis would lead unsatis- 
factory conclusions, e.g. about dipole moments. Three different alternatives 
have been proposed: 

a) the use of different weighting factors for the partitioning among two 
atoms [5], 

b) the use of L6wdin orthogonalized orbitals I-6] each of which is completely 
attributed to a particular atom [7], 

c) the definition of regions of space which are exclusively attributed to each 
of the atoms in a molecule [8]. 
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Table 2. Net charges in heteronuclear diatomics 

Ransil wavefunction [12] STO basis [13] 
Mulliken Christoffersen This work CNDO INDO 

Li + H- 0.35 0.51 0.62 0.27 0.29 
B+H- 0.02 - 0.12 0.30 0.08 0.08 
F- H § 0.23 0.39 0.06 0.23 0.27 
C+O - 0.17 0.55 0.19 0.08 0.07 
Li § 0.28 0.48 0.37 0.56 0.58 

Approach c) seems to be rather untractable and has been tested only in 
linear systems [9]. Approach b) is definitely open to critique because ortho- 
gonalization can be achieved only by contributions of other atoms to a non- 
orthogonal orbital, Thus the assignment of the resulting orthogonalized orbital 
to a particular atom is arbitrary. Cusachs and Politzer [10] have compared the 
Mulliken analysis and L~Swdin analysis in diborane. The charge distributions 
of the same wavefunction were completely different. To avoid practical and 
methodogical difficulties approach a) seems to offer the greatest possibilities. 
Our approach is in fact of this type. It differs from Christoffersen's in a sense 
that Christoffersen uses the coefficients of an SCF calculation to define 
weighting factors, whereas we obtain weighting factors from the nature of 
overlap distribution alone. It would be proper here to state, that our weighting 
factors come close to L6wdin's idea [-11] to distribute the overlap among the 
atoms in such a way that the dipole moment of the distribution is conserved. In 
the simplest cases our procedure [-1] yields indeed this result. However, in cases 
where overlap distributions of type ls,2pab or 2s,,2p6 b are involved our 
formulas are more general than L~Swdin's because they take care of the hybrid 
dipole parts. 

In Table 2 we have compared net charges for several selected diatomics 
LiH, BH, HF, CO and LiF in Mulliken's, Christoffersen's and our approximation 
based on Ransil's [12-1 optimized minimal basis sets as well as CNDO and 
INDO type calculations [13]. The differences in results could not be more 
striking. To determine which atomic distribution is most appropriate, we have 
calculated dipole moments with these charge distributions. These are listed under 
A in Table 3. The total dipole moment should properly be calculated as con- 
sisting of two parts: the charge part and the hybrid part [13]. The charge part 
is calculated with the weighted overlap integrals according to (2.6) with x = 1. 
Only the first two terms contribute in this case. There are four hybrid parts. 
The first two are the direct single-center contributions for x = r of distributions 
2s,2p%, 2Sb2pcr b and lsa2p%, ls, 2p%. These cannot be accounted for by 
overlap integrals. In the CNDO and INDO methods, there appears only the 
2s2p~r part. The other two result from two-center dipole parts of 2s,2pa b, 
2Sb2pa, and ls,2pab, lSb2p%. They are in the third and fourth term of (2.6) for 
x = r. The sum of these five dipole parts reproduces the dipole moment of the 
wavefunction within 1% accuracy. This is not too surprising considering that 
(2.5b) is. defining the weighting factors, But it also shows that the neglect of 



Polarization and Charge Distr ibutions 

Table 3. Dipole moments (in Debye) of heteronuclear diatomics 

17 

Ransil  wavefunction [12] 

M Ch This exact exp. 
work 

S T O  basis [13] 

C N D O  I N D O  

Li+H - A -2 .71  

B 

C 
D 
E 
F - 2 . 7 l  

B - H  + A - 0 . 1 4  
B 

C 
D 
E 
F - 0 . 1 4  

F - H  + A 1.01 

B 

C 
D 
E 
F 1.01 

C - O  + A -0 .94  
B 

C 
D 
E 
F --0.94 

Li+F - A -2 .02  
B 

C 
D 
E 
F - 2.02 

- 3.94 - 4.77 
- 1.20 

0.06 
0.00 

- 0.02 
- 3 . 9 4  -5 .93  - 5 . 9 2  -5 .88  

0.70 - 1.81 
3.44 

- 0.04 
0.00 

- 0.02 
0.70 1.57 1.58 

1.74 0.25 
1.21 

- 0.02 
0.00 

-0 .01  
1.74 1.43 1.44 1.74 

- 2.98 - 1.03 
1.69 

- 0.02 
- 0.04 

0.00 
-2 .98  0.60 0.59 0.12 

- 3 . 1 6  - 2 . 7 0  
-0 .65  

0.02 
- 0 . 1 5  

0.01 
-3 .16  - 3 . 4 7  -3 .43  - 6 . 6  

- 2 . 0 4  -2 .19  
- 4 . 1 2  -4 .01 

- 6 . 1 6  -6 .20  

- 0.43 - 0.46 
2.56 2.30 

2.13 1.84 

1.09 1.30 
0.77 0.69 

1.86 1.99 

- 0.46 - 0.40 
-0 .18  - 0 . 2 0  

- 0.64 - 0.60 

- 5.82 - 6.03 
- 2.08 - 1.83 

- 7.90 - 7.86 

A charge part, 
B single-center 2s 2pa hybrid part, 
C single-center ls2pa hybrid part, 
D two-center 2s2pa hybrid part, 
E two-center ls2pa hybrid part, 
F total dipole moment, 
M Mulliken, 
Ch Christoffersen. 

higher-order terms in the weighting factors was not severe. Calculations with 
other Ransil wavefunctions confirm this result. For this accuracy, the con- 
tributions from D, i.e. the hybrid parts of the two-center 2s2pcr, are in general 
not negligeable as can be seen from CO and LiF. 

Neither the Mulliken, nor the Christoffersen approximation are in good 
agreement with the wavefunction's total dipole moment.  This is true with or 
without hybrid parts. With regard to the C N D O  and I N D O  charges, we feel 
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Table 4. Atomic occupation numbers in heteronuclear diatomics 

A + B- Ransil wavefunction [12] 
Mulliken This work 
ls 2s 2pa 2pro ls 2s 2per 2pn 

Li 

B 

H 

C 

Li 

1.995 0.395 0.256 1.983 0.288 0.107 
H 1.354 1.622 

1.999 1.808 1.169 1.996 1.810 0.888 
H 1.024 1.305 

F 1.999 1.946 1.284 2.000 1.999 1.934 1.124 
0.771 0.943 

1.999 1.663 0.929 1.234 1.990 1.714 0.959 
O 1.999 1.865 1.545 2.766 1.994 1.858 1.485 

1.996 0.055 0.057 0.613 1.991 0.063 0.072 
F 1.999 1.943 1.950 3.387 1.998 1.970 1.906 

2.000 

1.148 
2.852 

0.501 
3.499 

that they may not be reliable, although the total dipole moments  are often well 
reproduced. 

For  several reasons, we did not push this investigation farther at this time. 
Firstly, minimal basis sets are not producing good dipole moments, e.g. in CO 
and LiF. So the absolute value of these charge calculations is limited. Secondly, 
very few wavefunctions are published on polyatomics. A test in polyatomics 
would involve generating good wavefunctions. Thirdly, there is still some freedom 
in the polarization factors which concerns the functions #' and v'. F rom (2.6) it 
can be seen that a particular type of function may be necessary, e.g. 2s b and 2po- a 
for XZsa2pctb , to ensure a proper united a tom limit. For  the usual internuclear 
distances, however, there is no constraint to fix the exponents. We feel that the 
most consistent scheme is one in which the basis functions of the MO's  are used 
as #' and v'. For  example, it does not seem consistent to use v' = 2/)o- on hydrogen 
since this function is not in Ransil's basis set. Further study of this point is 
necessary. 

In Table 4, we have compared the atomic occupation numbers for Mulliken's 
and our approximation.  We observe in the hydrides a shift of charge from 2per 
of the hereto atoms to ls of hydrogen as the main difference to Mulliken's 
analysis. CO is characterized by a shift of 2s and 2po- charge from C to O and an 
opposite, but smaller shift of 2pTz charge from O to C. This trend is over- 
emphasized in the Mulliken analysis. Yet opposite a and r~ transfers cancel each 
other to a large extent. This effect is somewhat reduced by our polarization 
factors and leads to an increased overall charge transfer. LiF is bound primarily 
by a z-bond on top of an ionic a bond. Transfer of the a electron of Li is causing 
the polarity. 

5. Electron Repul s ion  Integrals  

Integral approximations for three- and four-center integrals were the 
starting point of the Mulliken approximation [!4].  It was a gratifying idea to 
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Tab le  5. E r r o r  (%) of  M n l l i k e n  a n d  this  w o r k ' s  i n t eg ra l  a p p r o x i m a t i o n s  of two-cen t e r  h y b r i d  in tegra l s  
for  va r i ous  r a t ios  of  o rb i t a l  e x p o n e n t s  a n d  i n t e r n u c l e a r  d i s t ances  R (a.u.) 

(b/(a ( l s  A lSB[ lS A 1SA) (2S A 2SB[ lSA tSA) (2pO'A 2p0"B [ 1SA lSA) (2pgA 2p7Cli [ISA lSA) 

M u l l i k e n  Th i s  M u l l i k e n  Th i s  M u l l i k e n  This  M u l l i k e n  This  
w o r k  w o r k  w o r k  w o r k  

0 0.2 - 12 19 - 6 59 - 6 111 - 6 33 
5 - 9 34 - 16 35 36 504 - 1 46 

1 0  - 12 43 - 18 32 - 3 - 92 0.7 59 

0 0.5 - 3 4 - 2 13 - 2 26 - 2 7 
5 - 2 21 - 9 11 - 15 - 46 4 24 

10 - 2 41 - 10 22 5 14 9 46 

0 1 0 0 0 0 0 0 0 0 
5 14 14 - 1 - 1 5701 5701 10 10 

10 58 58 29 29 2278 2278 44 44  

0 2 - 3 1 - 4 8 - 4 17 - 4 3 
5 61 11 25 - 1 2 - 3 29 4 

10 214 41 123 27 101 39 126 30 

0 5 - 11 0.5 - 16 16 - 16 42 - 16 3 
5 99 3 52 0.5 22 3 53 1 

10 256 7 162 6 136 27 162 6 

reduce multi-center integrals to two-center Coulomb integrals. Cisek [15] has 
compared the accuracy of various methods and proposed an expansion to 
reproduce multipole moments. Harris and Rein [16] also favored empirical 
adjustment so as to obtain best orbital coefficients for certain standard integrals 
which then could be used for other integrals. 

We have considered the simplest two-center hybrid integrals (1s A lSBI lS A l s n )  , 

(2SA 2SB] lSA lSA) , (2ptYA 2ptTB] ISA lSA) , (2pTcA 2pIrBI lSA lSA) and compared Mul- 
liken's and our approximations for various ratios (b/(~ with the exact values 
calculated with the formulas of Ruedenberg et al. [17]. The results are listed in 
Table 5. The errors of the Mulliken approximation are usually smaller than 
those of this work, if the orbital on center B is more diffuse than those on 
center A. We find our results improved over Mulliken's if the orbital on B is 
more contracted than those on A. The numbers in italics which indicate very 
large errors are at those distances where the exact integral is close to zero. 
Considering the fact that there seems to be not much gain in improved 
weighting factors, the question arises what the reason for this unsatisfactory 
behaviour could be. Certainly the influence of the location of distribution of the 
second electron is important. In this case the redistribution is to generate one- 
center integrals which are effectively overemphasizing the trend, namely to 
increase the integral value where the Mulliken approximation yields a too small 
value. This latter pattern is well pronounced in the table for all cases where the 
Mulliken approximation is closer to the exact values than ours, i.e. for (b/(a < 1. 
Also the neglect of the higher terms in (2.6) might be more crucial than in the 
single-electron case. We think that exchange integrals would be from symmetry 
more apt than hybrid integrals to an improved treatment with different 
weighting factors. 
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6. Conclusion 

The calculations in this paper open the way to a new definition of atomic 
charges in molecules. Although the formulas were tested only in diatomics with 
Slater orbitals centered on the nuclei, a generalization is straightforward. 
A rotation of the results in a local coordinate system to a molecular coordinate 
system performed in the same way as in Pople's CNDO program would lead 
directly to atomic distributions in polyatomics. Also, there is no restriction of 
the formulas to Slater functions. The concepts hold also for Gaussian functions. 
Pure Gaussian functions would also allow in simple fashion to redistribute off- 
center orbital contributions. The same considerations h o l d  also for approxi- 
mations of other integrals. Electronic repulsion integrals are more sophisticated 
in structure and would need more care to guarantee a desired accuracy. 
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